
CS1112 Exercise 6 Name: NetID:

You have until Sunday, 10/2, at 9pm to complete this exercise. You must get problems 1 and 2 checked off in
discussion section, office hours, or consultant hours. Submit Problems 3, 4, and 5 using Matlab Grader.

1 Different ways to create vectors

Type the following expressions in the Matlab Command Window to see what kind of vectors they create. Write
the resulting vectors (and answer the questions) on the blanks.

a = zeros(1,4) %________________

b = zeros(4,1) %________________ What do the arguments specify?________________________

c = ones(1,3) %________________

d = 10:2:17 %________________

f = 10:-1:17 %________________

g = linspace(10,19,4) %________________

h = linspace(10,6,5) %________________

k = [10 20 40] %________________ What does the space separator do?_____________________

m = [10,20,40] %________________ What does the comma separator do?_____________________

n = [10;20;40] %________________ What does the semi-colon separator do?________________

p = [a k] %________________

q = [b; n] %________________

r = [a n] %ERROR--mismatched dimensions! (Attempt to concatenate a column to a row)

s = b’ %________________ This operation is called "transpose"

t = [a b’] %________________

2 Check out the Matlab debugger

In this problem, we will explore the use of the MATLAB debugger (a useful tool for finding errors in your code).
Type the following code into a script called onlyEven.m:

% Generate random ints in [0, 1, ..., 10] and store the generated number if it is even.

% Stop when 0 is generated and do not store 0.

k = 0; % vector length so far

maxNum = 10;

num = ceil(rand*(maxNum+2))-1;

v = []; % initialize empty vector

while num>0

if rem(num,2)==0

k = k+1;

v(k) = num;

end

num = ceil(rand*(maxNum+2))-1;

end

1



It generates random integers in [0, 1, ..., 10] and stores only the even integers that are generated. The code stops
when the randomly generated number is 0.

(a) Add a breakpoint to the line where k is incremented (to add a breakpoint, click on the line number [for
newer versions of MATLAB] or click on the dash next to the line number [for older versions of MATLAB]),
then run the script. When it pauses, you will see a green arrow next to that line. Look at the value of k

in the Workspace; did MATLAB pause before or after executing that line?

(b) Step the program once; the green arrow should move next to the end keyword. What value does k have

now?

(c) Continue the program; it should stop at your breakpoint again. Which variables have changed?

(d) There is an error in the code. Create a breakpoint in the one or both of the num = ceil(rand*(maxNum+2))-1;

lines and try to identify the error by stepping through the code. You may have to do this a few times to find

the error. What is the error?

3 Basic loop pattern for a vector See Matlab Grader

The objective of this problem is to give you practice with basic loop patterns on vector—do not try to circumvent
the practice by using built-in functions.

(a) Accumulation Pattern: Compute the sum of all the elements in vector v. Do not use built-in function sum.

(b) Finding the best in a set: Find the maximum value in vector v. Do not use built-in functions max, min and
sort.

4 Searching within a vector See Matlab Grader

Write a function vectorQuery(v,n,r) to determine whether the number r appears in the first n components of
vector v. The function returns true if r is in the first n components of v and false otherwise. Assume that r
is an integer, v stores integer values, and n is a positive integer. Make effective use of a loop to do the search.
Do not use any built-in functions other than length, min, max. Do not use vectorized code. Make sure that the
loop index doesn’t go “out of bounds” (if n is greater than the length of vector v). Be efficient: the loop should
stop as soon as r is found.

5 Creating vectors of unknown length See Matlab Grader

Write a function sequence(m) that generates a sequence of random integer numbers between 1 and m, inclusive,
stopping when a value is repeated for the first time. m > 1. The function returns a vector containing all the
numbers generated (in the order in which they were generated) except for the last value that is a repeated
occurrence.

Example: If the generated sequence is 3 1 9 5 7 2 5, the vector to be returned should be 3 1 9 5 7 2.

Notes: 1) Use built-in functions rand, floor, ceil to generate random integer values; do not use function randi.
2) Use a while-loop since this problem is a case of indefinite iteration—the number of iterations needed is not
known in advance. 3) Make effective use of the function vectorQuery that you have developed already—Do not
use built-in functions find or contains. 4) When you don’t know how long a vector needs to be, you can build
it one component at a time. We build a vector one component at a time in onlyEven.m so please review that
script if you are unsure of how to do this.

2


